1. Consider a 3 -dimensional solid S where the base of S is the region enclosed by the parabola $y=1-x^{2}$ and the x-axis and cross-sections perpendicular to the x-axis are squares.
(a) Sketch the region of the base of S and include a cross-section of S.
(b) Find the area $A(x)$ of the cross section of S at x. (This is what we call an arbitrary crosssection.)
(c) By integrating $A(x)$ over an appropriate interval, compute the volume of the solid S.
2. Consider a 3 -dimensional solid S whose base is the triangular region with vertices $(0,0),(1,0)$, and $(0,2)$ and the cross-section perpendicular to the y-axis are equilateral triangles.
(a) Sketch the region of the base of S and include a cross-section of S.
(b) Find a formula for the area of an equilateral triangle with side-length a.
(c) Using the formula from part (b), find the area $A(y)$ of the cross section of S at y.
(d) By integrating $A(y)$ over an appropriate interval, compute the volume of the solid S.
3. Consider a 3 -dimensional solid S whose base is the triangular region with vertices $(0,0),(2,0)$, and $(0,1)$ and the cross-section perpendicular to the x-axis are squares. Find the volume of S.
4. Find the volume of the solid S which is a right circular cone with height h and base radius r.
5. Find the volume of the solid S with radius r and the parallel cross-sections perpendicular to the base are squares.
